Irrelevant deformations and holography

Monica Guica

IphT, CEA Saclay

Motivation

black hole entropy

$$S_{BH} = \frac{\mathcal{A}_H}{4G}$$

universal

Introduction

black hole entropy

Holography

The AdS/CFT correspondence

- AdS/CFT correspondence: two approaches
 - I. "top-down": concrete constructions in string theory

II. "bottom-up": universalist approach

- \forall CFT_d with large N (large gap) \rightarrow gravity in AdS_{d+1}
- symmetries → asymptotic symmetries (Virasoro 3d)
- correlation functions → scattering
- axiomatic description of CFTs, even at strong coupling

Beyond AdS/CFT

- non-AdS holography: hard → no concrete examples in string theory for asympt. flat, de Sitter, etc.
- infer properties of dual QFT from spacetime: symmetries, thermodynamics, correlation functions

e.g. celestial holography programme

Motivation from non-AdS holography

- non-AdS holography: hard → no concrete examples in string theory for asympt. flat, de Sitter, etc.
- infer properties of dual QFT from spacetime: symmetries, thermodynamics, correlation functions

e.g. celestial holography programme

• this data is hard to assemble into a consistent whole w/o knowing the basic QFT structure/properties

Motivation from non-AdS holography

- non-AdS holography: hard → no concrete examples in string theory for asympt. flat, de Sitter, etc.
- infer properties of dual QFT from spacetime: symmetries, thermodynamics, correlation functions

e.g. celestial holography programme

• this data is hard to assemble into a consistent whole w/o knowing the basic QFT structure/properties

Motivation from non-AdS holography

- non-AdS holography: hard → no concrete examples in string theory for asympt. flat, de Sitter, etc.
- infer properties of dual QFT from spacetime: symmetries, thermodynamics, correlation functions

e.g. celestial holography programme

- this data is hard to assemble into a consistent whole w/o knowing the basic QFT structure/properties
- dictionary also not exactly known; idem for the boundary conditions
- having an in principle independent QFT description is valuable

Irrelevant flows and non-AdS holography

- holographic dual ↔ finely-tuned irrelevant flow → (non-local) QFT
- HARD
- ∃ concrete examples of finely tuned irrelevant flows dual to non-AdS backgrounds
- even if intractable, can give information about dimension, where it lives etc.

I : review some old examples of non-AdS holography in string theory → lessons for "universalist" approaches to certain holographic correspondences

II : exactly solvable irrelevant deformations (TT and JT) of two-dimensional CFTs and their applications to (non)-AdS holography

I: String-theoretical examples

Example 1: Non-commutative N=4 SYM

T-duality, shift, T-duality

• D3 branes in a spatial B - field \leftarrow induced by **TsT** + decoupling $\alpha' \rightarrow 0$

 $B \to \infty$

• non-commutative $\mathcal{N}=4$ SYM $\cdot \rightarrow \star$ Moyal star product

$$[x^i, x^j] = i\theta^{ij}$$

$$f(x) \star g(x) = e^{\frac{i}{2}\theta^{ij}\frac{\partial}{\partial\xi^i}\frac{\partial}{\partial\zeta^j}} \left| f(x+\xi)g(x+\zeta) \right|_{\xi=\zeta=0}$$

Seiberg, Witten '99

- planar diagrams: same as in $\mathcal{N}=4~$ SYM up to phase factors involving the external momenta
 - \rightarrow free energy (thermodynamics) same as in $\mathcal{N}=4\,$ SYM

Filk '96

• field redefinition NC $\mathcal{N} = 4$ SYM \rightarrow ordinary $\mathcal{N} = 4$ SYM + infinite # of irrelevant operators

with finely - tuned coefficients $\sim heta^n \mathcal{O}_{4+2n}$

→ UV – completeness, properties of diagrams and thermodynamics mysterious in this picture

Holographic dual

dual background: obtained via TsT + decoupling

Maldacena, Russo '99

$$ds^{2} = gN\alpha' \left[r^{2}(-dt^{2} + dx_{1}^{2}) + \frac{r^{2}}{1 + b^{2}r^{4}}(dx_{2}^{2} + dx_{3}^{2}) + \frac{dr^{2}}{r^{2}} + d\Omega_{5}^{2} \right] \qquad e^{2\phi} = \frac{g^{2}}{1 + b^{2}r^{4}}$$

- interpolates between $AdS_5 \times S^5$ in the IR \rightarrow funny asymptotics in the UV (NC SYM)
 - \rightarrow leading irrelevant deformation: dim 6
 - \rightarrow can argue for UV completeness from decoupling limit
- thermodynamics same as $\mathcal{N}=4$
- correlation functions : non-locality → momentum-space
 - \rightarrow gauge-invariant operators : "open Wilson lines" $\Delta x^{\mu} = \theta^{\mu\nu} k_{\nu}$
 - → match between field theory and gravity


```
Gross, Hashimoto, Itzhaki '00
Rozali & van Raamsdonk '00
```

Example 2: Dipole-deformed N=4 SYM

- TsT along || and ⊥ direction to the branes
- star-product deformation of dual field theory : dipole star product

Bergman, Ganor '00

 ψ

$$\Phi \rightarrow L^{\mu}_{\Phi} = q_{\Phi}\lambda^{\mu} \qquad (\Phi_1 \star \Phi_2)(x^{\mu}) = \Phi_1(x^{\mu} - \frac{1}{2}L^{\mu}_2) \Phi_2(x^{\mu} + \frac{1}{2}L^{\mu}_1) \qquad \text{non-local dipole length}$$

- planar diagrams unaffected up to a phase → large N free energy unaffected
- Seiberg-Witten map: dipole theory = $\mathcal{N} = 4$ SYM + infinite number of irrelevant Lorentz operators
- dual gravity background: TsT of original background + decoupling limit

Applications

holographic modeling of strongly-coupled systems with non-relativistic conformal invariance, a.k.a.
 AdS/cold atom correspondence

Adams & Balasubramanian '08

$$ds^{2} = -\lambda^{2} r^{4} (dx^{+})^{2} + r^{2} \left(dx^{+} dx^{-} + \sum_{i=1}^{d-2} dx_{i}^{2} \right) + \frac{dr^{2}}{r^{2}} \qquad \qquad x^{+} \to c^{2} x^{+} , \quad x^{-} \to x^{-}$$
$$x^{i} \to c x^{i}$$

- Schrödinger $_{d+1}$ backgrounds \iff NR CFT $_{d-1}$ codimension 2 holography (symmetries)
- however, certain Schrödinger₅ × S^5 backgrounds \implies null dipole–deformed $\mathcal{N} = 4 SYM \lambda^{\mu} ||\hat{x}^-$

 $\rightarrow \mathcal{N} = 4 + \text{infinite # of Schrödinger-invariant irrelevant operators} \begin{cases} \text{non-local along } x^- \\ \text{local and Schröd.-invar. along} \\ x^+, x^i \end{cases}$

NR CFT: compactify x⁻ ↔ DLCQ of null dipole theory (additional reduction along non-local direction)

Maldacena, Martelli, Tachikawa '08

this type of NR CFT has a very special structure

The Kerr / CFT correspondence

• extreme Kerr black hole $GM^2 \simeq J$ e.g. GRS 1915+105

$$ds^{2} = 2J \Omega^{2}(\theta) \left[-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + \frac{\sin^{2}\theta}{\Omega^{4}(\theta)} (\frac{d\phi}{r} + rdt)^{2} + d\theta^{2} \right]$$
$$SL(2, \mathbb{R})_{L} \qquad U(1)_{R}$$

• Kerr/CFT :

infinite # of symmetries \rightarrow Virasoro c = 12J

Near Horizon Extreme Kerr

Kerr entropy reproduced by Cardy $\approx \frac{1}{2}$ CFT₂

 $\left[wAdS_3
ight]$

- universality (all extremal black holes have Virasoro + entropy match)
- scattering amplitudes look like momentum-space CFT₂ correlation functions (on both sides), but Bredberg, Hartman, Song, Strominger '09

with momentum-dependent conformal dimensions $h_L(\bar{p}), h_R(\bar{p})$

non-local!

The Kerr / CFT correspondence

• extreme Kerr black hole $GM^2 \simeq J$ e.g. GRS 1915+105

$$ds^{2} = 2J \Omega^{2}(\theta) \left[-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + \frac{\sin^{2}\theta}{\Omega^{4}(\theta)} (\frac{d\phi}{r^{2}} + rdt)^{2} + d\theta^{2} \right]$$
$$SL(2, \mathbb{R})_{L} \qquad \qquad U(1)_{R}$$

• Kerr/CFT :

infinite # of symmetries \rightarrow Virasoro c = 12JKerr entropy reproduced by Cardy $\approx \frac{1}{2}$ CFT₂ Near Horizon Extreme Kerr

universality (all extremal black holes have Virasoro + entropy match)

 scattering amplitudes look like momentum-space CFT₂ correlation functions (on both sides), but Bredberg, Hartman, Song, Strominger '09

with momentum-dependent conformal dimensions $h_L(\bar{p}), h_R(\bar{p})$

non-local !

The Kerr / "CFT" correspondence

• extreme Kerr black hole $GM^2 \simeq J$ e.g. GRS 1915+105

$$ds^{2} = 2J \Omega^{2}(\theta) \left[-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + \frac{\sin^{2}\theta}{\Omega^{4}(\theta)} (\frac{d\phi}{r^{2}} + rdt)^{2} + d\theta^{2} \right]$$
$$SL(2, \mathbb{R})_{L} \qquad \qquad U(1)_{R}$$

Kerr/CFT :

 $\begin{cases} \text{ infinite # of symmetries } \rightarrow \text{ Virasoro } c = 12J \\ \text{Kerr entropy reproduced by Cardy } \approx \frac{1}{2} \text{ CFT}_2 \end{cases}$

Near Horizon Extreme Kerr

 $wAdS_3$

universality (all extremal black holes have Virasoro + entropy match)

 scattering amplitudes look like momentum-space CFT₂ correlation functions (on both sides), but Bredberg, Hartman, Song, Strominger '09

with momentum-dependent conformal dimensions $h_L(\bar{p}), h_R(\bar{p})$

non-local!

String-inspired interpretation of Kerr/"CFT"

- warped $AdS_3 \rightarrow$ finite-temperature versions of $Schr_3$ (NR symmetries: $SL(2,\mathbb{R})_L \times U(1)_R$)
- e.g. TsT of intersecting D1-D5 + flow to IR \rightarrow not tractable in field theory
- decoupling argument → UV complete theory

 $S_{dipole\,CFT} = S_{CFT} + \lambda \int d^2x \,\mathcal{O}_{(1,2)} + \dots$

- dipole CFT := UV-complete 2d QFT : local & conformal on the left
 non-local on the right
- agrees with non-local features of the correlation functions
- Kerr/"CFT" analysis suggests that, despite non-locality
- hard to check without a concrete example

Assessment of string constructions

- can realise specific examples of non-AdS holography using specific brane constructions
 → very different from standard QFT intuition (non-local, but with very special structure)
- usually tractable when boundary theory is a gauge theory (YM, D3)
- usually not tractable for 3d bulk (intersecting branes)
- very special constructions → not easy to generalize, but still expect similar QFT structure
- simpler, more tractable setups?

Solvable irrelevant deformations

of 2d CFTs

Smirnov-Zamolodchikov deformations

• irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A, J^B

• define
$$\mathcal{O}_{J^A J^B}: \qquad \lim_{y \to x} \epsilon^{\alpha\beta} J^A_{\alpha}(x) J^B_{\beta}(y) = \mathcal{O}_{J^A J^B} + \text{derivative terms} \qquad \text{Zamolodchikov '04} \\ \text{SZ '16} \qquad \text{sz '16} \qquad$$

Smirnov-Zamolodchikov deformations

• irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A, J^B

• define
$$\mathcal{O}_{J^A,J^B}: \qquad \lim_{y \to x} \epsilon^{\alpha\beta} J^A_{\alpha}(x) J^B_{\beta}(y) = \mathcal{O}_{J^A,J^B} + \qquad \text{derivative terms} \qquad \text{Zamolodchikov '04} \qquad \text{SZ '16}$$
• deformation:
$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2 x \mathcal{O}_{J^A,J^B}(\mu)$$
• examples:
$$\left\{\begin{array}{c} T\bar{T}: \ J^A_{\alpha} = T_{\alpha}^A, \ J^B_{\beta} = T_{\beta}^B \ (\times \epsilon_{AB}) \qquad (2,2) \\ J\bar{T}: \ J^A_{\alpha} = J_{\alpha}, \ J^B_{\beta} = T_{\beta\bar{z}} \qquad \text{torentz} \qquad (1,2) \\ \end{array}\right\}$$
• highly tractable : exact finite -size spectrum, S-matrix, preserves integrability
• deformed theory non-local (scale $\mu^{\#}$) but argued UV complete

Smirnov-Zamolodchikov deformations

• irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A, J^B

• define
$$\mathcal{O}_{J^A J^B}: \qquad \lim_{y \to x} \epsilon^{\alpha\beta} J^A_{\alpha}(x) J^B_{\beta}(y) = \mathcal{O}_{J^A J^B} + \text{derivative terms} \qquad \text{Zamolodchikov '04} \\ \text{SZ '16} \qquad \text{sz '16} \qquad$$

The "QFT properties" of TT - deformed CFTs

 $S(E) = S_{Cardy}(E_0) = \#\sqrt{c(E+\mu E^2)}$

The "QFT properties" of TT - deformed CFTs

 $S(E) = S_{Cardy}(E_0) = \#\sqrt{c(E+\mu E^2)}$

The "QFT properties" of $T\overline{T}$ - deformed CFTs

 $S(E) = S_{Cardy}(E_0) = \#\sqrt{c(E+\mu E^2)}$

<u>The "QFT properties" of $J\overline{T}$ - deformed CFTs</u>

- left: flowed Virasoro explicitly different from generator of left conformal transformations
- Inon-local analogues of primary operators whose correlators are entirely determined by seed CFT

Holographic interpretation

- in AdS/CFT parlance, the Smirnov-Zamolodchikov deformations are double-trace → mixed boundary conditions for the dual fields
 - **TT** : mixed boundary conditions on the asymptotic metric (FG coefficients)

$$\gamma_{\alpha\beta}(\mu) = g^{(0)}_{\alpha\beta} - \mu g^{(2)}_{\alpha\beta} + \frac{\mu^2}{4} g^{(2)}_{\alpha\gamma} g^{(0)\gamma\delta} g^{(2)}_{\delta\beta} = fixed \qquad \qquad \text{pure gravity ~ Dirichlet at} \qquad \qquad \rho = -\mu$$

- JT : mixed boundary conditions b/w the asymptotic metric and U(1) Chern-Simons gauge field ~ Compere-Song-Strominger bnd. cond. in metric sector, but ASG has different interpretation
- 1st instance of mixed bnd. cond. on AdS₃ metric → bulk & boundary have independent definitions
 → precision check of the holographic dictionary
- change bnd. conditions on AdS_3 metric \rightarrow radical modification of the bnd. theory: local \rightarrow non-local
- TT, JT → non-AdS geometry b/c they are double-trace → need single-trace irrelevant deformations

Single-trace TT / JT - deformed CFTs

- AdS₃/CFT₂ gauge group: S_p (permutations) \rightarrow consider symmetric product orbifold CFTs \mathcal{M}^p/S_p
- standard TT: double-trace $\sum_{i} T_i \sum_{j} \overline{T}_j$ • seed \mathcal{M}^p/S_p : single-trace TT deformation $\sum_{i=1}^p T_i \overline{T}_i \implies (T\overline{T}_{def.} \mathcal{M})^p/S_p$
- exact partition function, spectrum, thermodynamics, correlation functions
 Apolo, Song '23
 Chakraborty, Georgescu, MG '23
- can also show Virasoro & fractional Virasoro generators survive, as well as the flowed KdV charges
- the non-linear algebra of the unrescaled symmetry generators is (untwisted sector)

$$[Q_m, Q_n] = (m-n)\sum_i \frac{Q_{m+n}^i}{R+2\mu H_R^i} + (m-n)\sum_i \frac{4\mu^2 H_R^i Q_m^i Q_n^i}{R_u^i R_H^i} + \frac{c}{12}m(m^2-1)\sum_i \frac{1}{(R_u^i)^2}R_u^i = R + 2\mu H_R^i$$

- same as double-trace algebra, but with $\ \mu o \mu/p\,$ inside expectation values $R^i_H = R + 2 \mu H^i$
- dual to a stringy background

<u>The NS5-F1 system and "single-trace $T\overline{T}$ "</u>

k NS5 and p F1 strings in the NS5 decoupling limit $g_s \rightarrow 0$, α' fixed p large UV: Little String Theory non-gravitational, non-local theory with Hagedorn growth IR: AdS_3 long strings: descr. by $(\mathcal{M}_{6k})^p/S_p$ SPO short strings: not ~

can have black holes

• worldsheet σ -model: exactly marginal deformation of the WZW model describing AdS_3 by $J^-\bar{J}^-$

$$ightarrow$$
 dual to CFT source for a $(2,2)$ single-trace operator ~ $\sum\limits_{i=1}^{r} T_i ar{T}_i$

Giveon, Itzhaki, Kutasov '17

p

Status of the correspondence

"weak form" : the long string sector of string theory on this background \iff single-trace TT

- spectrum of long string excitations exactly matches single-trace $T\bar{T}$ spectrum \checkmark GIK '17
- correlation functions of long string vertex operators match $T\overline{T}$ answer (w=1) Cui, Shu, Song, Wang '23
- spectrum of deformed discrete states & correl. functions do not match

"stronger form": UV theory shares certain universal features with single-trace TT – deformed CFTs

- black hole entropy S(E) agrees with $T\bar{T}$ entropy (Cardy \rightarrow Hagedorn) \checkmark GIK '17
- the asymptotic symmetries of the ALD background are identical to those of single-trace $T\overline{T}$
 - → same non-linear modification of Virasoro algebra in Fourier basis
- bnd. conditions on allowed diffeos dictated by black hole solutions $\omega(\mathcal{L}_{\xi^{ASG}}, \delta M) = \omega(\mathcal{L}_{\xi^{ASG}}, \delta J) = 0$

Lessons for flat holography?

- Penrose diagrams of ALD and AF spacetimes similar \rightarrow similar holographic prescriptions?
- NS5 decoupling limit \rightarrow the dual LST lives at i^0
- should the holographic dual to flat space similarly live at (the resolved) i^0 ?
- is the expected structure of correlation functions similar?
- if so, then could the solvable $T\overline{T}$ modeling of the ALD background give a clue of the "QFT structure"
- to look for? (note, in particular, that $T\overline{T}$ has a dimensionful coupling constant)

Conclusions

- in understanding non-AdS holography, some information about the "QFT structure" of the dual theory may be needed, in addition to symmetries, correlators, entropy
- may sometimes be obtained specific realisations of non-AdS holography within string theory
- dual theories were nonlocal and exhibited special structures not easily visible from standard observables or symmetries
- a better understanding of the types of QFTs that may appear could help understand what is possible

What is the codimension of the holographic dual to flat space?

Thank you!

The primary condition

• main idea: use interplay of the two sets of symmetry generators

$$\left(\begin{array}{c} \tilde{L}_{n}^{\mu} = R \, L_{n} - \lambda H_{R} J_{n} + \frac{\lambda^{2} H_{R}^{2}}{4} \delta_{n,0} , \quad \tilde{J}_{n}^{\mu} = J_{n} - \frac{\lambda H_{R}}{2} \delta_{n,0} \\ \\ \tilde{\bar{L}}_{n}^{\mu} = R_{v} \bar{L}_{n} - \lambda : H_{R} \bar{J}_{n} : + \frac{\lambda^{2} H_{R}^{2}}{4} \delta_{n,0} , \quad \tilde{J}_{n}^{\mu} = \bar{J}_{n} - \frac{\lambda H_{R}}{2} \delta_{n,0} \end{array} \right)$$

- algebra LM (L_n, J_n): Virasoro-Kac-Moody; algebra RM ($\overline{L}_n, \overline{J}_n$): non-linear modification of Vir.-KM
- LM: operators should be primary w.r.t. $L_n, J_n \leftarrow \text{implement conformal & affine U(1) transf.}$

Ward id:
$$[L_n, \mathcal{O}(w)] = e^{nw}(nh\mathcal{O} + \partial_w\mathcal{O})$$

 $n \ge -1$ w/ $h = \tilde{h} + \lambda \bar{p}\tilde{q} + \frac{\lambda^2 \bar{p}^2}{4}$

• introduce auxiliary ops. $\tilde{\mathcal{O}}(w, \bar{w})$ defined via $\partial_{\lambda} \tilde{\mathcal{O}}(w, \bar{w}) = [\mathcal{X}_{J\bar{T}}, \tilde{\mathcal{O}}(w, \bar{w})] \leftarrow \text{identical correlation}$ functions and Ward identities w.r.t. \tilde{L}_n etc., as the operators in the undeformed CFT

$$\mathcal{O}(w,-) = e^{Aw} e^{\lambda \bar{p} \sum_{n=1}^{\infty} e^{nw} \tilde{J}_{-n}} \tilde{\mathcal{O}}(w,-) e^{-\lambda \bar{p} \sum_{n=1}^{\infty} e^{-nw} \tilde{J}_{n}} \times RM$$

Conclusions

- we have shown that, despite their non-locality, TT deformed CFTs posess infinite symmetries
- various perspectives: abstract QM, classical Hamiltonian, Lagrangian, holographic + single-trace
- we have shown that the asymptotic symmetries of the asymptotically linear dilaton background in string theory are precisely those of single-trace TT – deformed CFTs
- this further suggests the relevant "QFT structure" for these bckgnds is closely related to that of

• a better understanding of both field theory and gravity (both doable!) may pave the way for precision holography in this background

Setup

- as we anticipate field-dependent symmetries \rightarrow turn on non-trivial background to see this
- we thus consider the asymptotically linear dilaton black hole backgrounds
- $ALD \times S^3 \times T^4 \rightarrow$ use consistent truncation to 3d $ds^2 = ds_3^2 + \ell^2 ds_{S_3}^2$, $H = 2\ell^2 \omega_{S^3} + b e^{2\phi} \omega_3$

$$d\bar{s}^{2} = \frac{r^{2}}{\alpha' r^{4} + \beta r^{2} + \alpha' L_{u}L_{v}} \left(r^{2}dUdV + L_{u}dU^{2} + L_{v}dV^{2} + \frac{L_{u}L_{v}}{r^{2}}dUdV\right) + k\frac{dr^{2}}{r^{2}}$$
$$e^{2\bar{\phi}} = \frac{kr^{2}}{\alpha' r^{4} + \beta r^{2} + \alpha' L_{u}L_{v}} \qquad \beta = \sqrt{p^{2} + 4\alpha'^{2}L_{u}L_{v}}$$

- classified linearized perturbations of this background: pure diffeos + propagating
- allowed diffeos : their symplectic form with the allowed modes, notably $\delta L_{u,v}$ must vanish \rightarrow charge conservation

The "QFT structure" of solvable irrelevant deformations

• study "QFT structure" explicitly for Smirnov-Zamolodchikov deformations $(T\overline{T}, J\overline{T}) \leftarrow exactly solvable$

• \exists non-local analogues of primary operators whose correlators are entirely determined by seed CFT

Holographic dual of TT - deformed CFTs

- TT deformation : **double trace**
- seed CFT : large c, large gap
 - → Einstein gravity + low-lying matter fields

pure gravity $\,\,pprox\,\,$ Dirichlet at $\,
ho=-\mu$

McGough, Mezei & Verlinde '16

- holographic dictionary derived from field theory using Hubbard-Stratonovich trick
- 1st instance of mixed bnd. cond. on AdS 3 metric
 - → bulk & boundary have independent definitions
 - → contrast standard situation where properties of the boundary theory are inferred from the bulk
- change bnd. conditions on AdS₃ metric → radical modification of the bnd. theory: local → non-local
- precision holography
 - \rightarrow perfect match of bulk/boundary spectrum \checkmark
 - \rightarrow symmetries \checkmark
 - \rightarrow other observables?